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Large Deviations and Ergodicity for Spin
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In this paper we investigate the large deviation principle ( L D P ) for spin particle
systems with possibly vanishing flip rates. The situation turns out to be much
more complicated if the flip rates are allowed to be zero than the one considered
by Dai, where the systems are assumed to have strictly positive flip rates. The
upper and lower large-deviation bounds are studied, respectively. The two
governing rate functions are compared and a variational principle is given. We
then apply the results to obtain some new large-deviation estimates for the
occupation times of attractive systems. In particular, we prove a strong form of
exponential convergence for ergodic systems.

1. INTRODUCTION

The large deviation principle (LDP) plays an important role in studying an
interacting particle system. It gives estimates of the probabilities that the
system has large fluctuations away from its stationary measures. The large
deviation (LD) rate function can be used to characterize these measures if
one obtain the corresponding variational principle. Recently, Dai Pra(4,5)

developed an approach to study the LDP for the space-time empirical pro-
cesses of spin particle systems. The results obtained apply to all spin
systems with strictly positive and translation invariant flip rates having
finite range interactions. A corresponding variational principle has also
been proved. A certain kind of local space-time Gibbsian structure plays a
key role in the study.

KEY WORDS: Interacting particle system; large deviation principle,
ergodicity.
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In the present paper we are interested in spin systems with not necessar-
ily strictly positive flip rates, including the well known contact processes and
voter models. The situation turns out to be much more complicated due to
the vanishing of the flip rates. This can be seen from at least two aspects.
First, the asymptotic behaviours depend more heavily on the initial distribu-
tions. For example, if a system has some traps, then starting from any one
of them, the LDP of the process is trivial or may fail. So in general, to
obtain a nontrivial LDP, conditions on the initial distributions are needed
and we should not expect to obtain a uniform LDP as in refs. 4 and 5.
Secondly, it can be seen from our arguments that the effects of boundary
conditions are not negligible. In this paper we mainly study systems with
periodic boundary conditions. We find two proper rate functions H0 and
H° and show that H0 governs the LD upper bounds for the system starting
from any initial distribution. We also give a reasonable condition on the
initial distributions so that we can obtain the LD lower bounds governed
by H°. The two rate functions are compared. Though we have not shown
that H0 = H0, we get that H0 < H0 and they coincide at least on {H° < oo}.
Furthermore, by showing a variational principle we see that both H0 and
H0 can be zero only at the stationary measures of the system, so the
probabilities of large fluctuations the system having away from these
measures will decay exponentially fast as time tends to infinite. These
results are then applied to attractive systems. We obtain some new large
deviation estimates for their occupation times. In particular, we show a
strong form of exponential convergence for ergodic systems.

For a spin system we refer to a continuous time Feller Markov process
with state space E= { — 1, 1}zd (d^ 1). For neE, rj(i) is interpreted as the
spin at site i e Zd. The evolution of the system in time is characterized by
a family of flip rates {c(i, rj), ieZd, n e E } , where for each i, c(i, •) is a non-
negative continuous function on E. The system changes its state at site /
with probability rate c(i, •). So we define the following generator:

where f is a cylindric function on E, i.e., f ( n ) depends on rj only through
the coordinates of rj in some finite subset of Zd. For i e Zd and r / e E , r j i e E
is defined by t ] i ( j ) = tj(j) if j=i, = —tj(i) if j =i;. Throughout this paper we
assume that the flip rates c are translation invariant with finite range inter-
actions, i.e., there exist a finite subset U0 of Zd and a nonnegative function
c0 on E which is not identically zero, such that c0(rj) depends on rj only
through the coordinates of q in U0 and
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where ()i is the shift operator on E defined by (Oit])(j) = rj(j +i), j e Z d .
Under this assumption, there exists a unique Feller Markov process
{ P 0 , t]£ E} on (Q, B} with the closure of Lc as its infinitesimal generator
(cf. ref. 11), where Q = D(R, E) is the space of £ valued right continuous
with left limit functions on R, endowed with the Skorohod topology, ,B is
the Borel rr-field.

We then define the family of systems with periodic boundary condi-
tions. For n^1, let An = {1 , . . . , n } d , En= { -1, 1}An and define

where j ( n ) is the rc-periodic element of r] defined by

with kn = (kln,...,kdn). The Markov process determined by Ln is denoted
by { P 0 , n , rje £}, which is in fact a Markov process on ( Q n , . B n ) , where
Qn = D( R, En), Bn is the Borel er-field. Now we define the space-time
empirical processes on (Q, .B) . For teR and ieZd, let 0t,i be the shift
operator on Q given by

For n> 1 and weQ, the space-time periodic element wn is defined by

Now define a family of probability measures on (Q, ,B) as follows:

where 6 w ( A ) = 1 if A; =0, otherwise. It is clear that R n , w e M s ( Q ) , the
space of all {0 t , i , - , tE R, ieZd}-invariant probability measures on (Q, B),
provided with the weak topology. One of the main objects of this paper
is to study the LDP of { P 0 , n ( R n e - ) , n ^ 1 ) } and { P ° ( R n e - ) , n ^ 1 } . To
this end, as in refs. 4 and 5, we will use a noninteracting system as
the reference family. Denote by { P ^ , r j e E } the Markov process with
c(i, n) s 1. Then it is shown in refs. 4 and 5 that there exists a nonnegative
function H on MS(Q) with compact level sets (i.e., V«$sO, { H ( Q ) ^ a } is a
compact subset of MS(Q)), such that for each A eB,
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where A0 and A are the interior and closure of A respectively. H is called
the rate function.

Now we define the two rate functions we need. For weQ, let

be the successive jump times of w t ( i ) in [0, I), and set

which is nondecreasing and right continuous in t. Then define for
Q e M s ( Q )

with the convention that — I.0 = 0, where co,~ =lim s - t- w) s . Noticing
that log £0(n) is bounded above, we see that H0 is well defined. It will
govern the LD upper bounds.

Next we define the rate function to be used to govern the LD lower
bounds. First define for n ^ 1

For QeMs(£2), denote by Qp
m the regular conditional probability distribu-

tion (r.c.p.d.) of Q given the er-field a(ca,(i): t<0). Then define
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and

Now we can state our first theorem concerning the two governing functions.

Theorem 1. Let H0 and H0 be defined as above. Then we have the
following conclusions.

(1) If H°(Q)«x>, then H0(Q) = H 0 ( Q ) . Hence H 0 ^ H 0 .

(2) H0 is lower semicontinuous (l.s.c.) with compact level sets.

(3) If H0(Q) = 0, then Qp
m = P0, g-a.s.. Conversely, if Q£ = P0,

g-a.s. and H(Q)< oo, then H0(Q) = 0.

Remark 1. (i) If c0 is strictly positive, then from Lemma 4.5 of
ref. 5 we see that either H(Q) = co or H 0 ( Q ) < I, hence H0 = H0.

( i i ) (3) is the variational principle in our case. Combined with (1) it
implies that both H0 and H0 can be zero only at the stationary measures
of the system with H(Q)«x>. By now we cannot say that Qp

m = P0
m implies

HQ) < oo. This is not an obvious fact even if the flip rates are strictly
positive, compare Theorem 3 and Proposition 5.1 of ref. 5.

(Hi) We think that in some cases, H 0 ( Q ) < H 0 ( Q ) may hold for
some Q. Some explanations are given in the remark following the proof of
Lemma 2.1, see Section 2.

The following result gives our LD upper bounds.

Theorem 2. For any closed subset F of MS(Q),

The same conclusion is also true with P0,n replaced by P0.

As we stated previously, to obtain nontrivial lower bounds, some con-
ditions should be imposed on the initial configurations. To give such a
condition, we first notice that { P 0 , n , r i e E } is in fact a continuous time
Markov Chain with the finite state space En, P0,n depends only on rj\A , so
n is regarded as in En for this process. Denote by pn( t, rj, A) the corre-
sponding transition probability function. We state the following condition:
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(H1) There exist AncEn for all large n such that

Next, for QeMS(Q) and n^ 1, define a probability measure nn
Q on En by

Let Me(fl) be the set of ergodic measures in MS(Q). We give the second
assumption:

(H2) For every QeMe
s(Q], except for at most one, there exist

An <= EH(n ^ 1) satisfying (1.4), such that

Then we have the following

Theorem 3. Assume (H 1 ) and (H2). If A°cEn(n^ 1) is a sequence
satisfying (1.4), then for every open subset G of MS(Q],

Remark 2. Condition (H1) means that starting from reAn, the
probabilities that the process on En can reach any state in En by time 1 are
not too small. We believe that it is not hard to be satisfied for most systems
without absorbing states. In particular, if

then both (H1 and (H2) are satisfied. Note that the above condition is
satisfied by any system with strictly positive flip rates.

Remark 3. For the basic contact process, it is well known that the
identically -1 configuration -1 is the only trap. Using three mutually
independent Poisson processes to construct the system (cf. ref. 8), we can
check that both (H1 and (H2) are satisfied. Indeed, we can choose
An={neEn,Y.i*Antl(i}> -nd in (H1) and see that for every QeM*(Q),
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except for <$r^, we have //£,(An)-> 1. Therefore for every n= — 1, every
open G cz MS(Q),

Remark 4. From our arguments in the following sections we
believe that if the flip rates are easy to be zero, we cannot expect to obtain
an LDP with H0 governing the lower bounds, even if the system has no
traps.

Remark 5. From Proposition 4.1 of ref. 5 we see that if H(Q)< oo,
then

and from Corollary 4.4 of ref. 5 we know that

for some function cu n (w ) of w, for the definitions of Z n ( w n ) and Zw ( c u )(ty),
see Section 2. Thus if we replace Zn(an) by Zwn(co), we can similarly define
a function H 0 , 1 which will govern the LD lower bounds for { P 0 ( Rne-),
n ^ - 1 } . Systems with more general boundary conditions can also be dis-
cussed. But it seems that the governing functions defined in this way may
be different. The effects of the boundary conditions may appear here. We
will not give further discussions. In the following we only apply the upper
bounds to attractive systems.

Recall that a spin system {c(i, rj), ieZd, t j e E } is said to be attractive,
if for i] and £, in E with r\ ̂  £, (i.e., rj(i) ^ £(i), V/e Zd) we have

It is well known that for a translation invariant and attractive system, there
exist a lower and an upper stationary distributions v_ and v+ for the pro-
cess. The system is ergodic iff v_ = v+. If we define p ± = v±(rj(0) = 1), then
p_ ^p + , and the system is ergodic iff p_ =P+ fcf. ref. 10, Chap. 3).
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From the point of view of ergodicity, we need only study the
asymptotic behavior of the occupation times of the system on each finite
set of sites. So we define

Then we have the following

Theorem 4. Given an attractive system with translation invariant
flip rates. Let p ± be defined as above. Then for any d > 0, there exists
ys > 0 such that

In particular, if the system is ergodic, p _ = p + = p, then for any d > 0

Therefore for any t] e E, T, -> p, Pn-a.s. as t -> oo.

Several authors have studied the occupation time large deviations for
some special particle systems, see refs. 1, 3, 9 and 10. They mainly con-
sidered some special initial distributions, e.g., product measures or invariat
measures of the systems, which make it possible to give more explicite com-
putations or estimates, hence the results obtained are critical in some cases.
Our Theorem 4 applies to all attractive systems with arbitrary initial dis-
tributions and, as can be easily seen, provides new information especially
to ergodic systems. For example, for the supercritical and subcritical basic
contact processes, some convergence results for the occupation times with
certain initial distributions can be deduced from the results of ref. 8 and 11,
but if the initial distributions is arbitrary or if the system is critical, little
is known by now. Combined with the result of ref. 2, our result means that
Tt -»0 exponentially fast for the critical contact process.

On the other hand, even for most of the special systems considered in
refs. 1, 3 and 9, the full LDP has not been proved. This may also indicate
that it is difficult to obtain such kind of results.

Theorems 1-4 are proved in the next four sections respectively. The
proofs of Theorems 1 and 2 involve comparison with a family of systems
with strictly positive flip rates, so that the results obtained in refs. 4 and 5
can be applied. This approach can not be used to prove Theorem 3. We
will use a technique initiated by Donsker and Varadhan (cf. ref. 12).
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Note. To make the notations used in the proofs simple, we work in
the case d=1.

2. THE RATE FUNCTIONS

We first define a family of systems with strictly positive flip rates which
will be used in both this and the next sections. Let

Then r0 > 0. For each r > 0, define a system by

where a v b = max(a, b). A simple but useful fact is that, We (0, r0),

Denote by { P r / e E } and { P r , n , yeE} the Markov processes determined
by (1.1) and (1.2) respectively, with c(i, rj) replaced by cr(i, n). Then V/-^0,
P r , n

F n «Pn \ F n and

where for a> e Q and r ̂  0,

and an is the periodic element of a>, as defined is §1 (cf. ref. 4). For w and
(a' in Q, we also define

with caat'eQ satisfying (axo')t(i) = (ja,(i), if ieAn; =u>',(i), if ieAc
n. We

simply write Zn = Z0
n and Zw = Z0,w'. it is easy to show that



378 Chen

The same inequality also holds with Zr
n and Zn replaced by Zr,w and Z™'

respectively.
Now we start to proove Theorem 1. Let Un = {ieAn: i+ U0 <£ An}

and define In(Q) = E Q l o g Z n ( w ) . Then from Proposition 4.1 of ref. 5, when
H(Q)<co, we can write

Thus to prove conclusion (1), it suffices to prove the following

Lemma 2.1. If H 0 ( Q ) < c o , then l im n – > I (1 /n 2 ) I n (Q) exists and

Proof. Define for r ̂  0

Since H 0 ( Q ) < oo, lim inf n – > I (1 /n 2 ) In(Q) > -oo. Thus from the definition
of Za(a>") we know that for all large «,

and hence from (2.1) we see that for large n and re(0, /•„),

From the stationariness of g it follows that We(0, r0) and for large n,
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Noticing that for i e An — Un and 0 ^ s < n,

we see that for re(0, r0),

By Proposition 4.5 of ref. 5 we know that H(Q) < x implies EQ \]
0 N 0 ( d t ) < oc,

thus

Using the Dominated Convergence Theorem we have l i m r 0 J r ( Q ) = J(Q).
Therefore,

proving the lemma.
Here we try to give some more considerations. Since

and J(Q}= 1 / n 2 E Q [ X n + X(2)+ y2)] where Xn = ̂ leA _„ \n
0 1 - c ( i , c o s ) d s

+ Z . , e A . - U . t i l o g c ( i , a ) , - ) N i ( d s ) , X(1)<H" = Z l 6 U i i [ 1 - c ( i , a } M ds, Y(1) =
X , - e c / l o g c ( i , w n - ) N i ( d s ) , X(2) and Y(2) are defined similarly, with wn

replaced by w. Noting
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we see that if H(Q) < co and

for all large n, then H0(Q) = H 0 ( Q ) . Thus if for some Q with H(Q)<co

Chen

for some subsequence nk, then H 0 ( Q ) < H 0 ( Q ) . Since we know there are
some cases for which (2.3) may hold for some Q, we think that H 0 ( Q ) <
H 0 ( Q ) may hold for some Q.

To prove conclusion (2), we notice that for r>0 and QeMs(Q),

From ref. 5 we know that both H and Hr are l.s.c. with compact level sets,
so if Qn => Q (n-> oc), we have

Since limrs,0 H,.(Q] = H0(Q), we see that H0 is l.s.c.. Furthermore, since
{ H 0 ( Q ) < a } c{Hr(Q)^a + r}, H0 has compact level sets.

Finally we prove conclusion (3). First define for n > 1

For a probability measure R on £>([0, 1],£), denote by Ra» a the r.c.p.d.
of R|Gn given Gn. To prove that H0(Q) = 0 implies Qp =P0"g-a.s., it is
sufficient to show

see the proof of Theorem 6 in ref. 5. The proof of (2.4) will be completed
with several lemmas.

Lemma 2.2. Let QeMs(Q) be such that H(Q) < oc. There exists a
constant p > 0, such that
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Proof. By Propopisition 5.2 of ref. 5, H(Q) < x implies

The conclusion follows.

Lemma 2.3. If H0(Q)=0, then for each n^1, we can choose a
sequence of positive numbers { r k } decreasing to 0, such that

Proof. We first show that we can choose rk\Q and a sequence of
finite subsets Wk of Z increasing to Ac

n such that

where Gwk = a(w,(i), 0 < t < 1 , ieWk). Since H0(Q)0 = 0, it follows from
(2.1) that Hr( Q) <£ r for r > 0. For k ^ 1. Let

For every m>1, denote Nm = (n + 2k)m. Then repeating the proof of
Theorem 3.31 of ref. 6 we see that for rk>0,

where dkA,,c K,<=/4^ and Gv =o(wt(j\. 0^ t ̂  1, je V,). By Proposition
5.2 of ref. 5,

it then follows from (2.6) that we can choose rk\Q and finite sets Wk\A
c
n

such that (2.5) holds. Furthermore, from the proof of Theorem 5 of ref. 5
it can be seen that for all sufficiently large k.
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From this and (2.5) we get

proving the lemma.
The next goal is to show that for n > 1,

To this end we need to estimate ( d P 0 / d P ^ ^ . For coeQ, denote by
co(n) and (o(n} the projections of W on B(R, En) and D(R, Ec

n) respectively.
Then define for n, k ^ 1,

t^B> o and Zn, 0 are defined with crk replaced by c. Then

and
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see the proof of Theorem 4 in ref. 5, and notice that Zn,0(co) = 0 implies
• A n , 0 ( W ) =0 for PW0 almost all co(n). Thus

and we have the following

Lemma 2.4. If H0(Q) = 0, then Q(w: Zn,0M = 0) = 0. Thus

and E Q logZ n , 0 = limk_ao E
e logZ n , k > -co. In particular, (2.7) holds.

Proof. Notice that if c(i, c o t ) = 0 for some i e Un and 0 < t<1, then
cr(i, c o t - ) = r. Hence if Zn,0(w) = 0, then for large k,

where

Combining this with (2.8) we see that

If Zn o ̂  0, then Zn k ^ an for large k. These mean that if Q( Zn 0( (a) = 0) > 0,
then

Since H0(Q) < co, EQ log i//n,0 is finite, thus
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On the other hand, from Lemma 2.2 and the fact that E Q l o g ( ( d Q ^ /
dPr^ G] | G) > 0, it follows that for n> 1

contradicting (2.10). So Q(w. Z n i 0 (w) = 0) = 0. Therefore, by the definition
of Zn,0 we have

Thus Q-a.s. for large k with rke (0, r 0 ) , we have

This means that EqlogZn, 0 is finite and that we can use the Dominated
convergence theorem to conclude that

Now (2.7) follows from this and (2.9), completing the proof.
From Lemma 2.3 and (2.7) it follows that

This implies E Q l o g ( d Q p
G a / d P 0

G n ) | G n = 0 and hence (2.4) holds. Then
repeating the proof of Theorem 6 of ref. 5 we obtain Qp = P0

m Q-a.s..
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Finally we prove that if Qp
m = P0

aoQ-a.s. and H(Q) < oo, then H0(Q) = 0.
By Lemma 4.1 of ref. 5

Thus by the definition of H0 we will obtain that H0(Q) = 0 once we show
that

To prove (2.11), we use the stationariness of Q to obtain that for re(0, r0),

From the proof of Corollary 4.4 of ref. 5 and (2.2) we can see that for
w e { ( d P 0 / d P w 0 ) | F n ( W ' ) = 0 } , there exists can = u>n(w') such that

From this, the definition of Zr,w and (2.12) it follows that
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By this, the fact that EQ \1
0 N0(dt) < oo and the proof of Lemma 4.7 of ref. 5

we obtain

i.e., J r (Q)>l im^ a o (1 /n 2 )E . Q log( (dP 0 /dP a t ) \ f i i ) - r . Letting r\0 to get
(2.11). Theorem 1 is proved.

3. THE UPPER BOUNDS

In this section, we prove Theorem 2. First we observe that
{sup^P 0 , n (R n e - ) , n^ 1} are exponentially tight, i.e., for any K>0, there
exists a compact subset Ck of MS(Q), such that

since it is true for sup,, Pr,n(Rn e) with r > 0 (cf. refs. 4 and 5) and we have
(2.2). Thus to obtain the upper bounds, we need only show that for each
Qo e MS(Q) and for any 6 > 0, there is a neighborhood ¥Qo of Q0 such that

We only give the proof for the first case, it is similar for the second case.
Since H0(Q)«x> implies that EQ0 J£ log £„(«,-) N0(dt) is finite, for d>0
we can choose a small rl e (0, d/3) such that

By the lower semicontinuity of Hr (ref. 5), we can choose a neighborhood
FQ of Q0 such that
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Now from Theorem 7.11 of ref. 4, (2.2) and (3.3) we obtain

By the definition of Hr1 (see (2.1) and (3.2)) we get

Combining the above two inequalities we obtain (3.1).
The proof of the upper bounds for { P 0 ( R n e - ) , n > 1 } is similar, since

we know that P0 |Fn« Pn |Fn and that there is a function wn = con(co) on Q
such that

see the proof of Corollary 4.4 of ref. 5.

4. THE LOWER BOUNDS

Now we start to prove Theorem 3.

Lemma 4.1. Suppose Q e M e ( Q ) and H 0 ( Q ) < c o . Then

Proof. Since H 0 ( Q ) < oo implies H(Q)«x>, it follows from the
proofs of Lemma 6.4 of ref. 4 and Proposition 4.1 of ref. 5 that
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Also from H 0 ( Q ) < oo we have

Thus Q-a.s. \og(dP^"/dPmo)\Fn is finite for large n and by (2.1) we know
that Vre(0 , r0),

where

From the ergodicity of Q and the fact that J(Q) = ( 1/n2) E Q X ( 1 ) is finite we
see that limn^00(1/n2) X(1)=J(Q) in L1(Q). Moreover, note that

These together with (4.1) complete the proof.
Recall the definition of [tnQ for QeMs(Q) and n^1. We have the

following

Lemma 4.2. Let QeMe
s(Q) be such that H0(2) < oo, AncEn(n^ 1)

satisfy l iminfn_> 0 0 /«g(An) >0. Then for any sequence A0
n<=En(n^ 1) satis-

fying (1.5) and any open GB Q,

In particular,
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Proof. Notice that for any E > 0, k ^ 1 and open G1e Q, when n > k,

From the ergodicity of Q and Lemma 4.1 we see that lim infn _ ^ Ak > 0.
Now for co e Q,

Therefore,

Thus

Now for open G^Q, pick a neighborhood G1 of Q such that G1 c G and
choose meZ + and <$>0 such that if Q'eG, and ||Q' — Q"\\Fm<d then
O" e G. Since
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uniformly in w, from the markov property we have that for large n,

Combining this with (1.5) and (4.3) we complete the proof.
It remains to extend (4.2) to general QeMs(Q) with H 0 (Q)«x>.

Notice that for such a Q, H 0 ( Q ) = H0(Q) and that H0 is both semi-
continuous and affine (since so is H). As done in ref. 4, we may assume
Q = Em=i *iQi with QieM°(Q), oc,>0 and £m

 i=l a,.= 1. To prove (4.2) for
this Q, we first remark that for 0 < a < 1, if we define

then under the assumptions of Lemma 4.2 and repeating the proof of it we
have

Now we finish the proof of Theorem 3 with the following

Lemma 4.3. Let Q = £m=, a,Qt with Q^M^Q), oc,.>0 and
£f_, a,= 1. If H 0 ( Q ) < oo, then for any sequence A°<=En(n> 1) satisfying
(1.4) and any open set G^Q,

Proof. From assumption (H2), we may assume that for 1 <i<m— 1,
there exist Ai

n ̂ En(n ^ 1) such that Qi and Ai
n satisfy (1.5). Pick a
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neighborhood Gi, of Qi for each i, and choose S >0 and NeZ + , such that
if Q'i e G, for 1 < i< m and || Q' - £m

i= 1 a,.g; || FN < d, then Q e G. Denote by
a0 = 0, A; = Xi=0 a> and define

Then it is not difficult to check that

uniformly in ca and ;'. From this and the Markov property we have

Since H0(Qi) = H0(Qi,) < I, from the above inequality and the remark
following Lemma 4.2 we obtain

Theorem 3 is proved by now.

5. OCCUPATION TIMES FOR ATTRACTIVE SYSTEM

Finally we prove Theorem 4. For caeQ and n> 1, let

and J(x) = inf{H0(Q): w 0 ( 0 ) Q ( d w ) = x}. Then define
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By the contraction principle (cf. ref. 12) and Theorem 2 we know that
( P 0

n ( M n e - ) , n^-1} has the uniform LDP upper bounds with rate func-
tion J. Therefore for any 8 > 0, there exists ys > 0 such that

Since {c(i,rj), ieZ, n e E } is attractive, from Corollary 2.21 of Chap. 2 of
ref. 10 we know that the joint distribution of { ( 1 / n ) \ Q w ) s ( i ) d s , ieAn]
under P0 has positive correlations. Therefore if we use T and — 1 to denote
the identically 1 and — 1 configurations respectively, then

where we have used the translation invariance of the system. Hence by the
attractiveness and (5.1) we obtain

Using P0 we can similarly show that

The extension to general time parameter t is easy. Thus to finish the proof
of Theorem 4. We need only show that m_—p_ and m+=p + . From
Theorem 1 and the definition of J we know that if J(x) = Q, then there is
a QeMs(Q) with its marginal v at t = 0 being a stationary distribution of
{ P 0 , t } e E } , such that

S o / j _ < x < / > + , i.e., [m_, m + ] c [ p _ , p+]. On the other hand, it is easy
to check that for x e ( p _ , p + ), there exists px>0 such that



Combining this with (5.2) and (5.3) we see that p_ >m_ and p + ^m + .
Thus m_=p_ and m + = p +, proving the theorem.
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